skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ben‐Zvi, Or"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Essential to life on Earth, assessment of marine photosynthesis is of paramount importance. Photosynthesis occurs in spatially discrete microscopic entities at various levels of biological organization, from subcellular chloroplasts to symbiotic microalgae and macroalgae, and is influenced by the surrounding conditions.As such, in situ photosynthetic efficiency mapping on appropriate scales holds great promise for learning about these processes.To achieve this goal, we designed, fabricated, and tested an underwater microscope that incorporates standard colour, epifluorescence, and variable chlorophyllafluorescence imaging with nearly micron spatial resolution that resolves the structure and photosynthetic efficiency of benthic organisms.Our results highlight coral observations with high‐resolution photosynthetic spatial variability and detailed morphology. Our imaging system therefore enables research never before possible on the health and physiology of benthic aquatic organisms in situ, placing it in the context of their physical and biological environment. 
    more » « less
    Free, publicly-accessible full text available July 2, 2026